首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10545篇
  免费   951篇
  国内免费   626篇
电工技术   554篇
综合类   811篇
化学工业   804篇
金属工艺   196篇
机械仪表   497篇
建筑科学   554篇
矿业工程   162篇
能源动力   398篇
轻工业   139篇
水利工程   102篇
石油天然气   131篇
武器工业   128篇
无线电   760篇
一般工业技术   852篇
冶金工业   587篇
原子能技术   71篇
自动化技术   5376篇
  2024年   37篇
  2023年   286篇
  2022年   410篇
  2021年   507篇
  2020年   505篇
  2019年   295篇
  2018年   247篇
  2017年   303篇
  2016年   326篇
  2015年   350篇
  2014年   523篇
  2013年   553篇
  2012年   491篇
  2011年   709篇
  2010年   551篇
  2009年   675篇
  2008年   642篇
  2007年   675篇
  2006年   576篇
  2005年   498篇
  2004年   421篇
  2003年   394篇
  2002年   289篇
  2001年   214篇
  2000年   180篇
  1999年   169篇
  1998年   170篇
  1997年   122篇
  1996年   113篇
  1995年   103篇
  1994年   129篇
  1993年   81篇
  1992年   73篇
  1991年   62篇
  1990年   52篇
  1989年   48篇
  1988年   46篇
  1987年   24篇
  1986年   27篇
  1985年   32篇
  1984年   13篇
  1983年   18篇
  1982年   15篇
  1981年   11篇
  1980年   16篇
  1979年   17篇
  1966年   12篇
  1965年   9篇
  1964年   11篇
  1955年   10篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
81.
This paper considers the compressive sensing framework as a way of overcoming the spatio-angular trade-off inherent to light field acquisition devices. We present a novel method to reconstruct a full 4D light field from a sparse set of data samples or measurements. The approach relies on the assumption that sparse models in the 4D Fourier domain can efficiently represent light fields. The proposed algorithm reconstructs light fields by selecting the frequencies of the Fourier basis functions that best approximate the available samples in 4D hyper-blocks. The performance of the reconstruction algorithm is further improved by enforcing orthogonality of the approximation residue at each iteration, i.e. for each selected basis function. Since sparsity is better preserved in the continuous Fourier domain, we propose to refine the selected frequencies by searching for neighboring non-integer frequency values. Experiments show that the proposed algorithm yields performance improvements of more than 1 dB compared to state-of-the-art compressive light field reconstruction methods. The frequency refinement step also significantly enhances the visual quality of reconstruction results of our method by a 1.8 dB average.  相似文献   
82.
Membrane chemical degradation is a major contributor to the still limited lifetime of proton exchange membrane (PEM) fuel cells. In the present work, this phenomenon is simulated by computational fluid dynamics (CFD). The main advantage of the CFD model is that it can provide the degradation profile across the cell active area. Results reveal that degradation accelerates when voltage, temperature and pressure are increased and when reactants humidity and membrane thickness are decreased. Moreover, membrane deterioration is found to be more severe where oxygen pressure is higher, and more heterogeneous when oxygen distribution is less uniform. Generally, conditions that increase current production and thus oxygen depletion along the cell increase degradation heterogeneity. The flow field design is also found to influence the membrane degradation spatial profile. The modeling strategy here applied, the incorporation of a degradation sub-model into a general-purpose CFD code, can be used to include other degradation mechanisms.  相似文献   
83.
In order to ensure safe and sustainable design of geosynthetic-reinforced soil foundation (GRSF), settlement prediction is a challenging task for practising civil/geotechnical engineers. In this paper, a new hybrid technique for predicting the settlement of GRSF has been proposed based on the combination of evolutionary algorithm, that is, grey-wolf optimisation (GWO) and artificial neural network (ANN), abbreviated as ANN-GWO model. For this purpose, the reliable pertinent data were generated through numerical simulations conducted on validated large-scale 3-D finite element model. The predictive power of the model was assessed using various well-established statistical indices, and also validated against several independent scientific studies as reported in literature. Furthermore, the sensitivity analysis was conducted to examine the robustness and reliability of the model. The results as obtained have indicated that the developed hybrid ANN-GWO model can estimate the maximum settlement of GRSF under service loads in a reliable and intelligent way, and thus, can be deployed as a predictive tool for the preliminary design of GRSF. Finally, the model was translated into functional relationship which can be executed without the need of any expensive computer-based program.  相似文献   
84.
Some studies have discussed the potential and challenges related to the use of artificial intelligence (AI) in government. However, there are few empirical studies that have examined factors that influence the use of AI in government. By collecting policy documents and empirical data from the government, IT enterprises, and the public in China, we identified the influencing factors in the three stages of government adoption, implementation, and decision-making. The research results show that the influencing factors of government application of AI are different at different stages and with different stakeholders’ backgrounds.  相似文献   
85.
Over the past few decades, face recognition has become the most effective biometric technique in recognizing people’s identity, as it is widely used in many areas of our daily lives. However, it is a challenging technique since facial images vary in rotations, expressions, and illuminations. To minimize the impact of these challenges, exploiting information from various feature extraction methods is recommended since one of the most critical tasks in face recognition system is the extraction of facial features. Therefore, this paper presents a new approach to face recognition based on the fusion of Gabor-based feature extraction, Fast Independent Component Analysis (FastICA), and Linear Discriminant Analysis (LDA). In the presented method, first, face images are transformed to grayscale and resized to have a uniform size. After that, facial features are extracted from the aligned face image using Gabor, FastICA, and LDA methods. Finally, the nearest distance classifier is utilized to recognize the identity of the individuals. Here, the performance of six distance classifiers, namely Euclidean, Cosine, Bray-Curtis, Mahalanobis, Correlation, and Manhattan, are investigated. Experimental results revealed that the presented method attains a higher rank-one recognition rate compared to the recent approaches in the literature on four benchmarked face datasets: ORL, GT, FEI, and Yale. Moreover, it showed that the proposed method not only helps in better extracting the features but also in improving the overall efficiency of the facial recognition system.  相似文献   
86.
《水科学与水工程》2022,15(1):29-39
In this article, current research findings of local scour at offshore windfarm monopile foundations are presented. The scour mechanisms and scour depth prediction formulas under different hydrodynamic conditions are summarized, including the current-only condition, wave-only condition, combined wave-current condition, and complex dynamic condition. Furthermore, this article analyzes the influencing factors on the basis of classical equations for predicting the equilibrium scour depth under specific conditions. The weakness of existing researches and future prospects are also discussed. It is suggested that future research shall focus on physical experiments under unsteady tidal currents or other complex loadings. The computational fluid dynamics-discrete element method and artificial intelligence technique are suggested being adopted to study the scour at offshore windfarm foundations.  相似文献   
87.
云计算在企业应用中的拓展不但表现为平台规模的拓展,也表现为平台应用的延伸。“云网协同”和“微服务化”是当前企业云平台演进的重要趋势。随着企业信息化建设重要性的持续提升,微服务化云网协同平台的运行维护面临极大挑战。首先分析了平台运维面临的挑战,梳理了平台人工智能运维需求,提出了基于时序数据分析的平台人工智能运维技术体系,并给出了云网协同平台人工智能运维子系统参考设计。所提技术体系和系统设计具有实用性和推广性,可以作为企业云平台建设和优化的技术途径参考。  相似文献   
88.
Self-ignition may occur during hydrogen storage and transportation if high-pressure hydrogen is suddenly released into the downstream pipelines, and the presence of obstacles inside the pipeline may affect the ignition mechanism of high-pressure hydrogen. In this work, the effects of multiple obstacles inside the tube on the shock wave propagation and self-ignition during high-pressure hydrogen release are investigated by numerical simulation. The RNG k-ε turbulence model, EDC combustion model, and 19-step detailed hydrogen combustion mechanism are employed. After verifying the reliability of the model with experimental data, the self-ignition process of high-pressure hydrogen release into tubes with obstacles with different locations, spacings, shapes, and blockage ratios is numerically investigated. The results show that obstacles with different locations, spacings, shapes and blockage ratios will generate reflected shock waves with different sizes and propagation trends. The closer the location of obstacles to the burst disk, the smaller the spacing, and the larger the blockage ratio will cause the greater the pressure of the reflected shock wave it produces. Compared with the tubes with rectangular-shaped, semi-circular-shaped and triangular-shaped obstacles, self-ignition is preferred to occur in tube with triangular-shaped obstacles.  相似文献   
89.
An experimental analysis regarding the distribution of the cutting fluid is very difficult due to the inaccessibility of the contact zone within the bore hole. Therefore, suitable simulation models are necessary to evaluate new tool designs and optimize drilling processes. In this paper the coolant distribution during helical deep hole drilling is analyzed with high-speed microscopy. Micro particles are added to the cutting fluid circuit by a developed high-pressure mixing vessel. After the evaluation of suitable particle size, particle concentration and coolant pressure, a computational fluid dynamics (CFD) simulation is validated with the experimental results. The comparison shows a very good model quality with a marginal difference for the flow velocity of 1.57% between simulation and experiment. The simulation considers the kinematic viscosity of the fluid. The results show that the fluid velocity in the chip flutes is low compared to the fluid velocity at the exit of the coolant channels of the tool and drops even further between the guide chamfers. The flow velocity and the flow pressure directly at the cutting edge decrease to such an extent that the fluid cannot generate a sufficient cooling or lubrication. With the CFD simulation a deeper understanding of the behavior and interactions of the cutting fluid is achieved. Based on these results further research activities to improve the coolant supply can be carried out with great potential to evaluate new tool geometries and optimize the machining process.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-021-00383-w  相似文献   
90.
In this paper, a numerical analysis of the production of hydrogen via autothermal (ATR) steam methane reforming (SMR) is presented. The combustion reaction occurs over a Pt/Al2O3 catalyst, and the reforming reaction is operated using a Ni/Al2O3 catalyst inside the same cylindrical channel. A novel configuration with18 catalytic-bed macro-patterns alternately mounted, referred to as SDB, is designed and compared with the catalytic dual-bed reactor (conventional configuration), referred to as CDB, at the same operating temperature and pressure conditions of 900 °C and 14 bars, respectively. The results showed that hydrogen yield was improved by 4.5% compared to the conventional configuration, while a decrease of 67 °C of the highest temperature was noticed. Meanwhile, the methane conversion was 63.73% and 65.44% for the CDB and SDB configurations, respectively. Furthermore, the length of the reactor can be decreased by 27%, keeping the same hydrogen yield at the outlet of the conventional reactor, indicating a potential reduction in hydrogen cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号